Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 630: 122435, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442723

RESUMO

"Smart" nanogels are an attractive tool for the development of new strategies of immunization in veterinary medicine. Here, we reported the synthesis and physicochemical characterization of thermoresponsive nanogels based on poly(N-isopropylacrylamide) (pNIPAM) and theirin vitro, ex vivoand in vivo (mice model) performance. Smart nanogels of ca. 250 nm, with a transition temperature of 32 °C were obtained by precipitation polymerization. Assays to evaluatepNIPAM nanogels cytotoxicity were performed in different cell lines showing high biocompatibility (>70 %). The efficient internalization of the system was studied by confocal microscopy as well as flow cytometry. The ability to protect and deliver antigens was analyzed using the outer membrane lipoprotein A (OmlA), an important virulence factor ofActinobacillus pleuropneumoniae(App)cause of porcine pleuropneumonia. This lipoprotein was synthesized by recombinant technology and its technique was also described. The biodistribution ofpNIPAM nanogels administered intranasally was performedinvivo and ex vivo through Pearl Imaging System, which showed that nanogels were kept mostly in the lungs during the evaluated time. Besides, the efficacy of the proposal nanogel-based vaccine was studiedin vivoby measuring the antibody titers of BALB/c mice inoculated with OmlA encapsulated intopNIPAM nanogels compared to OmlA plus aluminum hydroxide adjuvant. The results proved the ability of nanogels to stimulate a humoral immune response. Therefore, we have demonstrated thatpNIPAM nanogels can be used as an efficient platform for vaccine nanocarriers.


Assuntos
Resinas Acrílicas , Vacinas , Camundongos , Suínos , Animais , Nanogéis , Distribuição Tecidual , Resinas Acrílicas/química
2.
J Vet Res ; 65(3): 315-321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34917844

RESUMO

INTRODUCTION: Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) are cytokines widely used in ex vivo monocyte differentiation experiments, vaccine formulations and disease treatment. The aim of this study was to produce recombinant bovine GM-CSF and IL-4 in an episomal expression system that conserves the postransductional modification of the native proteins and to use the products to differentiate bovine monocytes into dendritic cells. MATERIAL AND METHODS: The recombinant proteins rGM-CSF and rIL-4 were expressed in PEAKrapid CRL-2828 human kidney cells, ATCC CRL-2828. The functional activity of the recombinant cytokines was monitored by registering morphological changes in bovine monocytes and assessing the expression of CD14 upon incubation with them. RESULTS: Both recombinant proteins were detected in the cell culture supernatant of transfected cells. Culture supernatants of transfected cells induced in bovine monocytes morphological changes that resemble macrophages or dendritic cells. In addition, bovine cells treated with rGM-CSF and rIL-4 showed reduced expression of the macrophage surface marker CD14 compared with untreated cells. This effect indicates the expected differentiation. The expression of the cytokines was stable after many successive cell passages and a freeze/thaw cycle. CONCLUSIONS: The semi-stable mammalian episomal expression system used in this study allowed us to easily produce functional bovine rGM-CSF and rIL-4 without the need for protein purification steps.

3.
Front Microbiol ; 11: 570794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193164

RESUMO

Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence.

4.
J Mol Microbiol Biotechnol ; 29(1-6): 83-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32259815

RESUMO

Bovine tuberculosis (bTB) is a disease produced by Mycobacterium bovis that affects livestock, wild animals, and humans. The classical diagnostic method to detect bTB is measuring the response induced with the intradermal injection of purified protein derivative of M. bovis (PPDb). Another ancillary bTB test detects IFN-γ produced in whole blood upon stimulation with PPDb, protein/peptide cocktails, or individual antigens. Among the most used M. bovis antigens in IFN-γ assays are the secreted proteins ESAT-6 and CFP-10, which together with antigen Rv3615c improve the sensitivity of the test in comparison to PPDb. Protein reagents for immune stimulation are generally obtained from Escherichia coli, because this bacterium produces a high level of recombinant proteins. However, E. coli recombinant antigens are in general contaminated with lipopolysaccharides and other components that produce non-specific IFN-γ secretion in in vitro assays. In this work, we produced the relevant ESAT-6, CFP-10, and Rv3615c M. bovis antigens as fusions to the polyhedrin protein from the baculovirus AcMNPV. We obtained chimeric proteins effectively incorporated to the occlusion bodies and easily purified the recombinant polyhedra with no reactive contaminants. In an IFN-γ assay, these fusion proteins showed equivalent sensibility but better specificity than the same M. bovis proteins produced in E. coli.


Assuntos
Antígenos de Bactérias/biossíntese , Baculoviridae/metabolismo , Mycobacterium bovis/imunologia , Animais , Proteínas de Bactérias/biossíntese , Bovinos , Escherichia coli/metabolismo , Testes de Liberação de Interferon-gama , Corpos de Oclusão Virais , Proteínas Recombinantes/biossíntese
5.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031264

RESUMO

Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.


Assuntos
Lipoproteínas/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Mycobacterium bovis/fisiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Animais , Bovinos , Pontos de Checagem do Ciclo Celular , Expressão Gênica , Células HeLa , Humanos , Lipoproteínas/genética , Viabilidade Microbiana , Mutação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óperon
6.
Tuberculosis (Edinb) ; 94(2): 170-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24440549

RESUMO

Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the causative agent of human tuberculosis, has developed several strategies involving proteins and other compounds known collectively as virulence factors to subvert human host defences and invade the human host. The Mce proteins are among these virulence-related proteins and are encoded by the mce1, mce2, mce3 and mce4 operons in the genome of M. tuberculosis. It has been proposed that these operons encode ABC-like lipid transporters; however, the nature of their substrates has only been revealed in the case of the Mce4 proteins. Here we found that the knockout of the mce1 operon alters the lipid profile of M. tuberculosis H37Rv and the uptake of palmitic acid. Thin layer chromatography and liquid chromatography-mass spectrometry analysis showed that the mce1 mutant accumulates more mycolic acids than the wild type and complemented strains. Interestingly, this accumulation of mycolic acid is exacerbated when bacteria are cultured in the presence of palmitic acid or arachidonic acid. These results suggest that the mce1 operon may serve as a mycolic acid re-importer.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Ácidos Micólicos/metabolismo , Tuberculose/metabolismo , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Hidrolases/genética , Metabolismo dos Lipídeos , Masculino , Óperon/genética , Análise de Sequência de DNA
7.
BMC Microbiol ; 13: 200, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007602

RESUMO

BACKGROUND: Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. RESULTS: We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtΔmce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtΔmce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtΔmce2RComp-containing phagosomes as compared to MtΔmce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. CONCLUSIONS: The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Virulência/biossíntese , Animais , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óperon , Transdução Genética , Tuberculose/microbiologia , Tuberculose/patologia
8.
Virulence ; 2(3): 233-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21543883

RESUMO

Integrity of p27-p55 operon has been demonstrated to be crucial for replication of Mycobacterium tuberculosis, the main agent of human tuberculosis, in the mouse model of infection. However, the individual contribution of each gene of the operon for the virulence of pathogenic Mycobacterium spp. still remains unclear. The operon is formed by two genes, p27 and p55. p27 gene encodes a lipoprotein that binds triacylated glycolipids and modulates the host immune responses by inhibiting the MHC-II Ag processing. Besides, p55 encodes an efflux pump that, together with P27, is involved in resistance to drugs. In this study, we evaluated the individual contribution of P27 and P55 to the virulence of Mycobacterium bovis, the etiological agent for bovine tuberculosis. Knockout mutation of p27-p55 operon in M. bovis severely decreased the virulence of the bacteria when assessed in a progressive model of pulmonary tuberculosis in Balb/c mice. In addition, the mutant strain showed poor replication in a murine macrophagic cell line. Virulence and intracellular replication were only restored when the mutant strain was complemented with a copy of the whole operon. The reintroduction of p55 into the mutant strain partially restored the virulence of the bacteria while no complementation was achieved with p27 individual gene. 


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Lipoproteínas/genética , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Viabilidade Microbiana , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia , Animais , Bovinos , Linhagem Celular , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Teste de Complementação Genética , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Óperon , Tuberculose Bovina/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...